
MATH 3A WEEK II
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1. Motivation for Matrices

A linear transformation is completely described by its effect on the standard
basis. Given a linear transformation, we wish to compress this information (its
effect on the standard basis) into as tight a package as we can; we will call this
package a matrix.

Let T : Rn → Rm be a linear transformation. Let x ∈ Rn be an arbitrary
vector, and call T (v) the destination of x under T . To understand the transfor-
mation T , we wish to find a formula for T (x). Since T (x) is an element of Rm,
it is a linear combination of the standard basis vectors e1, . . . , em in Rm; thus
there exist ci ∈ R as i runs from 1 to m such that T (x) =

∑m
i=1 ciei; we seek a

formula for the coefficients ci.
Now x is a linear combination of the standard basis vectors in Rn, so there

exist bj ∈ R as j runs from 1 to n such that x =
∑n

j=1 bjej . Since T is linear,
we see that T (x) =

∑n
j=1 bjT (ej); thus if we know where T sends the standard

basis vectors, we entirely understand T .
For each standard basis vector ej ∈ Rn, T (ej) ∈ Rm so T (ej) is a linear

combination of the standard basis vectors in Rm. Fixing j, we see that there are
real numbers aij , as i runs from 1 to m, such that T (ej) =

∑m
i=1 aijei. For our

arbitrary vector v we can write

T (x) =
n∑

j=1

bjT (ej) =
n∑

j=1

bj

( m∑
i=1

aijei

)
=

m∑
i=1

( n∑
j=1

aijbj

)
ei.

The final expression in the above equation reveals that the coefficients of T (x)
are given by

ci =
n∑

i=1

aijbj = (ai1, . . . , ain) · (b1, . . . bn);

that is, the ith coefficient of T (v) is the vector whose components are the ith

coordinates of the destinations of the standard basis vectors dotted with v.
Thus T is completely described by the numbers aij , as i runs from 1 to m and j

runs from 1 to n. These numbers form a mathematical object known as a matrix.
The formula for ci above motivates our definition of matrix multiplication.
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2. Matrices

Let m,n be positive integers. An m×n matrix with real entries is an array of
real numbers with m rows and n columns. We put brackets around the numbers;
thus if A is an m× n matrix, we write

A =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn

 ,

where aij is the real number in the ith row and the jth column. This can become
a lot of writing; we use an abbreviated notation

(number)slot.

In our case,
A = (aij)ij .

This notation means that aij is in the ijth slot. You may ask, “why repeat the
ij”? The reason is, the number in the ijth slot is not always indexed by ij. For
example, if A is a 2 × 3 matrix written as A = (2)ij and B is a 3 × 2 matrix
written as B = (3j − i)ij , then then

A =
[
2 2 2
2 2 2

]
and B =

2 5
1 4
0 3

 .

The transpose of an m× n matrix A = (aij)ij is the n×m matrix At whose
rows are the columns of A and whose columns are the rows of A:

At = (aji)ij .

Note that (At)t = A. An m× n matrix is called square if m = n. A matrix A is
symmetric if At = A; note that only square matrices can be symmetric.

A row vector is an 1×n matrix, and a column vector is a m× 1 matrix. Note
that if v is a column vector, then vt is a row vector. From now on, whenever
we need to consider a vector from Rn as a matrix, we consider to be a column
vector.

Let A be an m×n matrix. Denote the ith row of A by A(i) and the jth column
of A by A(j). Thus A(i) is a 1×n row vector and A(j) is an m×1 column vector.

Let v1, . . . , vn ∈ Rm. We consider these to be column vectors. Let

A = [v1 | · · · | vn]

denote the matrix whose jth column is vj ; thus A(j) = vj .
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3. Matrix Addition and Scalar Multiplication

Let A = (aij)ij and B = (bij)ij be m×n matrices. We define the matrix sum
A + B by

A + B = (aij + bij)ij .

We can only add matrices of the same size. Note that if A is square, then
A + O = O + A = A, where O is the zero matrix of the same size.

Let A = (aij)ij be an m × n matrix and let c ∈ R. We define the scalar
multiplication cA by

cA = (caij)ij .

We define −A to be the scalar product of −1 and A.
Note that the sum of column vectors is a column vector, and a scalar multiple

of a column vector is a column vector. Indeed, for the case of column vectors, the
definitions of matrix addition and scalar multiplication agree with the definitions
we previously gave for vectors in Rn.

The zero matrix of size m×n, denoted by Zm×n or simply by Z, is the m×n
matrix for which every entry is equal to zero: Zm×n = (0)ij .
Properties of Matrix Addition and Scalar Multiplication Let A and B
be m× n matrices and let c ∈ R be a scalar. Then

(a) A + B = B + A;
(b) (A + B) + C = A + (B + C);
(c) A + Z = A;
(d) A + (−A) = Z;
(e) c(A + B) = cA + cB.

Remark. These properties are proved directly from the definitions. �
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4. Matrix Multiplication

Let A = (aij)ij be an m× n matrix and let B = (bjk)jk be an n× p matrix.
We define the matrix product of A and B to be the m× p matrix AB given by

AB = (cik)ik, where cik =
n∑

j=1

aijbjk.

Viewing the ith row of A and the jth column of B as vectors in Rn, we see that

cik = A(i) ·B(j).

We have no definition for the product of an m × n matrix with a p × q matrix
unless n = p. If v, w ∈ Rn as considered as column vectors, then vtw = v · w.

The identity matrix of dimension n, denoted by In or simply by I, is the
n×n matrix whose entries are one along the diagonal and zero everywhere else:
In = (δij)ij , where δij is the “Kronecker delta” defined by

δij =

{
1 if i = j;
0 otherwise .

Properties of Matrix Multiplication Let A and C be m×n matrices, B and
D be n× p matrices, and E be a p× q matrix. Let c ∈ R be a scalar. Then

(a) A(BE) = (AB)E;
(b) ImA = A;
(c) AIn = A;
(d) (A + C)B = AB + CB;
(e) A(B + D) = AB + AD;
(f) c(AB) = A(cB);
(g) (AB)t = BtAt

(h) (AB)(i) = A(i)B;
(i) (AB)(k) = AB(k);
(j) (AB)(k)

(i) = A(i)B
(k).

Remark. These properties may be proved directly from the definitions, although
in some cases this could lead to a lot of notation. Of paramount importance to
us are properties (e) and (f), and we will soon examine them more closely. �

Matrix multiplication is NOT commutative.
Let x = (x1, . . . , xn) be a vector in Rn. We view x as a column vector, that

is, as an n× 1 matrix. Thus if A = (aij)ij is an m× n matrix, the product Ax
is defined to be an m× 1 matrix:

Ax =


a11 a12 . . . a1n

a21 a22 . . . a2n

...
... . . .

...
am1 am2 . . . amn




x1

x2

...
xn

 =


a11x1 + a12x2 + · · ·+ a1nxn

a21x1 + a22x2 + · · ·+ a2nxn

...
am1x1 + am2x2 + · · ·+ amnxn

 .

Using the distributive property of scalar multiplication over matrix addition, we
see that

Ax = x1A
(1) + · · ·+ xnA(n).

This m× 1 column vector is a linear combination of the columns of A.
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5. Matrices and Linear Transformations

We now consider the geometric interpretation of the product of a matrix and
a column vector. First we prove that this operation is linear.

Proposition 1. Let A be an m × n matrix. Then Aej = A(j), where ej is the
jth standard basis vector in Rn.

Proof. Since ej = (0, . . . , 1, . . . , 0), with 1 in the jth slot, we have

Aej = 0 ·A(1) + · · ·+ 1 ·A(j) + · · ·+ 0 ·A(n) = A(j).

�

Proposition 2. Let A be an m× n matrix. Then
(a) A(x + y) = Ax + Ay for all x, y ∈ Rn;
(b) A(ax) = a(Ax) for all x ∈ Rn, a ∈ R.

Proof. Let x, y ∈ Rn. Then x = (x1, . . . , xn) and y = (y1, . . . , yn) for some
xi, yi ∈ R. By definition of vector addition and matrix multiplication,

A(x + y) = (x1 + y1)A(1) + · · ·+ (xn + yn)A(n)

= (x1A
(1) + · · ·+ xnA(n)) + (y1A

(1) + · · ·+ ynA(n))
= Ax + Ay.

Now let a ∈ R. Then

A(ax) = ax1A
(1) + · · ·+ axnA(n)

= a(x1A
(1) + · · ·+ xnA(n))

= a(Ax).

�

Proposition 3. Let A be an m× n matrix. Define a function

TA : Rn → Rm by TA(x) = Ax.

Then T is a linear transformation.

Proof. This is immediate from the previous proposition. �

Proposition 4. Let T : Rn → Rm be a linear transformation. Define a matrix

AT = [T (e1) | · · · | T (en)].

Then
(a) T (x) = AT x for all x ∈ Rn;
(b) TAT

= T ;
(c) ATA

= A.

Proof. A linear transformation is completely determined by its effect on the
standard basis. The effect of AT on the standard basis is the same as that of T ;
but AT induces a linear transformation, so it must be the transformation T . �
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Thus m × n matrices correspond to linear transformations from Rn to Rm.
The zero matrix corresponds to the zero transformation (that transformation
which sends every element to the origin), and the identity matrix corresponds
to the identity transformation (that transformation which sends every element
to itself).

We emphasize that the columns of a matrix A are the destinations of the
standard basis vectors.

Example 1. Find the matrix Rθ of the linear transformation T : R2 → R2

which rotates the plane by an angle of θ radians.

Solution. We only need to discover what T does to the standard basis vectors.
We see that T (e1) = (cos θ, sin θ) and T (e2) = (− sin θ, cos θ). Then

Rθ = AT =
[
cos θ − sin θ
sin θ cos θ

]
.

Select a point on the unit circle to test this: Then

Rθ

[
cos α
sinα

]
=

[
cos θ cos α− sin θ sinα
sin θ cos α + cos θ sinα

]
=

[
cos(θ + α)
sin(θ + α)

]
;

this is what we would expect. �

Example 2. Find the matrix Fθ of the linear transformation T : R2 → R2

which reflects the plane across a line whose angle with the x-axis is θ.

Solution. We see that
T (e1) = (cos 2θ, sin 2θ)

and that

T (e2) = −(cos(2θ +
π

2
), sin(2θ +

π

2
) = (sin 2θ,− cos 2θ).

Thus

Fθ =
[
cos 2θ sin 2θ
sin 2θ − cos 2θ

]
.

�
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6. Matrices and Compositions of Linear Transformations

We now consider the geometric interpretation of matrix multiplication. Re-
call that if T : Rn → Rm and S : Rp → Rn are linear transformations, then
the composition T ◦ S : Rp → Rm given by T ◦ S(x) = T (S(x)) is a linear
transformation.

Proposition 5. Let A be an m× n matrix and let B be an n× p matrix. Then

TAB = TA ◦ TB .

Proof. This means that the transformation associated to a product of matrices
is the composition of the associated transformations. To show this, we only need
to show that these transformations have the same effect on an arbitrary basis
vector ek ∈ Rp.

The kth column of AB is equal to A times the kth column of B, and we have
seen that multiplying a matrix by ek picks out the kth column, so

TAB(ek) = (AB)(k) = AB(k).

On the other hand,

TA ◦ TB(ek) = TA(B(k)) = AB(k).

Thus these transformations have the same effect on ek, and we conclude that
they are the same transformation. �

Proposition 6. Let T : Rn → Rm and S : Rp → Rn be linear transformations.
Then

AT◦S = AT AS .

Proof. This means that the matrix associated to a composition of transforma-
tions is the product of the associated matrices. It suffices to show that the kth

column of AT◦S is the same as the kth column of AT AS . But

A
(k)
T◦S = T ◦ S(ek) = T (S(ek))

and
AT A

(k)
S = AT ASek = AT S(ek) = T (S(ek)).

�
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Example 3. Let S : R2 → R2 be the linear transformation which stretches the
plane horizontally by a factor of 2, and let T : R2 → R2 be the linear transforma-
tion which rotates the plane by 90 degrees (all rotations are counterclockwise).
Then

A = AS =
[
2 0
0 1

]
and B = AT =

[
0 −1
1 0

]
.

Note that intuitively we see that T ◦ S and S ◦ T have different effects on the
plane. Indeed,

BA =
[
0 −1
2 0

]
but AB =

[
0 −2
1 0

]
.

We see that matrix multiplication is NOT commutative.

Example 4. Show that the composition of rotations is a rotation whose angle
is the sum of the original angles.

Solution. We compute with matrices:

RαRβ =
[
cos α − sinα
sinα cos α

] [
cos β − sinβ
sinβ cos β

]
=

[
cos α cos β − sinα sinβ − cos α sinβ − sinα cos β
sinα cos β + cos α sinβ sinα sinβ + cos α cos β

]
=

[
cos(α + β) − sin(α + β)
sin(α + β) cos(α + β)

]
.

�
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7. Matrices and Invertible Linear Transformations

Recall that the identity transformation Jn : Rn → Rn is the function that has
no effect on Rn; it is given by Jn(v) = v. Since the identity matrix In has no
effect on the standard basis (viewed as column vectors), we see that

AJn
= In and TIn

= Jn.

Recall that a linear transformation T : Rn → Rm is invertible if it is bijective,
in which case there is an inverse function T−1 : Rm → Rn such that T−1◦T = Jn.

Suppose that T : Rn → Rm is an invertible linear transformation. We will
see that this implies m = n; for now, just assume m = n. Then the matrix
corresponding to T is an n× n matrix; that is, it is square.

Suppose that T is invertible; then T ◦T−1 = T−1◦T = idRn . Then AT AT−1 =
AT−1AT = Aid = I.

A matrix A is called invertible if there exists a matrix B such that AB =
BA = I. We see that two matrices are invertible if and only if the corresponding
linear transformations are bijective. The matrix B is called the inverse of A,
and is denoted by A−1. Note that A−1 is invertible (with inverse A).
Properties of Matrix Inverses
Let A, B, C, and D be square matrices of the same size.

(a) Inverses are unique.
(b) If A and B are invertible, then so is AB, with (AB)−1 = B−1A−1.
(c) If AC = DA = I, then C = D.
(d) If AB = I, then BA = I, so A and B are invertible.
Proof of (c) is in FB §1.5 Theorem 1.9. Proof of (d) is postponed for now.
Now if T : Rn → Rn is bijective, then for every b ∈ Rn there exists a unique

x ∈ Rn such that T (x) = b; indeed, we have x = T−1(b). In matrix form, this
says that the matrix equation Ax = b has a unique solution, given by x = A−1b.

We would like a method to find A−1. The idea is to “dissolve” A by multi-
plying both sides of the equation AX = I with invertible matrices: E1AX =
E1I = E1, then E2E1AX = E2E1, et cetera, at each step getting closer to the
identity (e.g. E2E1A looks more like the identity than E1A), until finally we
obtain En · · ·E1AX = En · · ·E1, where En · · ·E1A = I, so X = En · · ·E1. Now
X is the product of invertible matrices, so it is invertible, and it is the inverse of
A since AX = I.



10

8. Elementary Row Operations and Elementary Invertible
Matrices

The invertible matrices Ei mentioned above are called “elementary”; they
correspond to elementary row operations. A row operation is a way of modifying
a row of a matrix to change it into a different matrix. Tradition demands that
we list three elementary row operations:

Ri + cRj Type E Multiply jth row by c and add to ith row

cRi Type D Multiply ith row by c

Ri ↔ Rj Type P Swap the ith row and the jth row

For each of these three row operations, there is an invertible matrix E such
that EA is the result of the row operation applied to A. To find E, just perform
the row operation on the identity matrix.

E(i, j; c) is I except aij = c; E(i, j; c)−1 = E(i, j;−c).
D(i; c) is I except aii = c; D(i; c)−1 = D(i; c−1).
P (i, j) is I except aii = ajj = 0 and aij = aji = 1; P (i, j)−1 = P (i, j).
We give an organized algorithm for applying row operations to attempt to

find the inverse of a matrix.

Algorithm for Row Reduction of a Square Matrix to Find an Inverse
• Make all entries below the diagonal into zero, starting with the second

entry in the first column, proceeding downward, then doing the third
column, etc.

• Make all diagonal entries equal to one.
• Make all entries above the diagonal zero, starting with the lowest entry

in the last column, working upward in that column, then starting on the
next to last column, etc.

Step one is always possible; it may be necessary to swap some rows to do this.
Use only type E and P row operations.

Step two is possible if all diagonal entries are nonzero via use of type D
row operations; otherwise, the matrix is not invertible. To see this, let Q be
the matrix obtained after step one, and suppose that Q

(i)
(i) = 0 is the first zero

diagonal entry. Then all entries in column i below the diagonal are also zero,
so Q(i) is a linear combination of the previous columns (to see this may take
some effort, but it is true); say Q(i) = a1Q

(1) + · · · + ai−1Q
(i−1). Then a1e1 +

· · ·+ ai−1Q
(i−1) − ei is in the kernel of TA, so TA is not injective, and A is not

invertible.
Step three is possible whenever step two is possible. Use only type E row

operations.
Thus every invertible matrix is a product of elementary invertible matrices. To

see this, let A be invertible and suppose that X is its inverse. Then AX = I. Fol-
lowing the above algorithm, we obtain elementary invertible matrices E1, . . . , Er

such that
X = Er · · ·E1AX = Er · · ·E1I = Er · · ·E1.
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9. Introduction to Linear Equations

Consider the system of linear equations

3x1 − 4x2 = 11;
x1 + 2x2 = 7.

Solving this system means finding x1 and x2 which make the equations true.
The loci of the equations 3x1− 4x2 = 11 and x1 +2x2 = 7 are lines in R2 (we

have replaced the standard x and y by x1 and x2 because we want to use the
variables x and y to indicate vectors).

A second geometric interpretation of the problem comes from forming the
matrix of coefficients and the column vectors

A =
[
3 −4
1 2

]
, x =

[
x1

x2

]
, b =

[
b1

b2

]
,

and considering the matrix equation Ax = b. Since A corresponds to a lin-
ear transformation, solving the system of equations is equivalent to finding the
preimage of the point b under this linear transformation.

To solve this system, we can multiply the second equation by 2 and add it to
the first to get 5x1 = 25, so x1 = 5; then plug this into the second equation to
get 5 + 2x2 = 7, so x2 = 1.

Generalizing this solution technique to many equations in many unknowns
could lead to a lot of confusion and difficulty without a more organized approach.
We now search for a failsafe algorithm for finding the solution.

10. Linear Equations

A linear equation in n variables x1, . . . , xn is an equation of the form

a1x1 + · · ·+ anxn = b1,

where a1, . . . , an, b1 ∈ R are fixed constants.
Let a = (a1, . . . , an), x = (x1, . . . , xn), and q = ( b1

a1
, 0, . . . , 0). The above

equation becomes a · x = a · q, or

(x− q) · a = 0.

We recognize this as the equation of a hyperplane in Rn through the point q
with normal vector a.

Consider an arbitrary system of linear equations

a11x1 + · · ·+ a1nxn = b1

... =
...

ai1x1 + · · ·+ ainxn = bi

... =
...

a1nx1 + · · ·+ amnxn = bm

where aij , bi ∈ R are constants and xi are indeterminants.
Our goal is to use invertible matrices to help us solve such systems of linear

equation; that is, we wish to find all vectors x ∈ Rn such that when we plug
their coordinates into the equations, all of the resulting equations are true.
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One geometric interpretation of this problem is to find the intersection of the
hyperplanes in Rn which are the loci of the given equations.

A second geometric interpretation comes from forming the matrix A = (aij)ij .
Then setting x = (x1, . . . , xn) and b = (b1, . . . , bm), we see that the solution set
of the matrix equation Ax = b is exactly the solution set of the system of
equations. This matrix equation, stated in terms of linear transformations, is
TA(x) = b; solving means finding T−1

A (b), the preimage of the point b under the
linear transformation TA.

Our approach to the problem uses matrices; we seek column vectors x such
that Ax = b.

A general solution is the set of all such column vectors x.
A particular solution is a specific such column vector x.
The system is called homogeneous if bi = 0 for i = 1, . . . ,m. In this case,

solving the system of equations means finding the kernel of TA. Otherwise, the
system is nonhomogeneous.

We have seen that if b is in the image of TA, say TA(v) = b for some v ∈ Rn,
then T−1(b) = v + ker(TA). If TA is injective, then ker(TA) consists of a single
point (the origin), so T−1(b) = {v}. Otherwise, ker(TA) is a nontrivial subspace,
so v + ker(TA) at least one line, and possibly a plane or more. Thus there are
three possibilities:

(1) there are no solutions (b is not in the image of TA);
(2) there is exacly one solution (TA is injective);
(3) there are infinitely many solutions (TA has a nontrivial kernel).

If we have infinitely many solutions, they are of the form

v0 + c1v1 + · · ·+ ckvk,

where v0, . . . , vk are vectors which span the kernel of TA, c1, . . . , ck are free
scalars, v0 is a particular solution to Ax = b, and c1v1 + · · ·+ ckvk is the general
solution to the homogeneous equation Ax = 0 (the kernel of TA).

Suppose that there exists an invertible matrix E such that the matrix EA
has a particularly nice form. Then Ax = b ⇒ EAx = Eb; since E is invertible,
we have EAx = Eb ⇒ E−1EAx = E−1Eb ⇒ Ax = b. Thus the solution set of
Ax = b is exactly the solution set of EAx = Eb, so is suffices to find the solution
set of EAx = Eb.

The nice form we refer to here is known as reduced row echelon form.
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11. Reduced Row Echelon Form

A matrix is said to be in row echelon form if
i. All zero rows lie below nonzero rows;
ii. The first nonzero entry in any row appears in a column to the right of

the first nonzero entry in any preceding row.
The first nonzero entry in a row is called a pivot.

Given a matrix A, there is a sequence of row operations which brings A into
row echelon form. The final product is not unique.

A matrix is said to be in reduced row echelon form if
i. It is in row echelon form;
ii. All the pivots equal 1;
iii. All nonpivot entries in a column containing a pivot are equal to 0.

Given a matrix A, there is a sequence of row operations which brings A into
row echelon form. Although the sequence of row operations is not unique, the
final product is unique.

Gaussian elimination is an algorithm for using elementary row operations to
bring a matrix into reduced row echelon form. There are two stages: forward
elimination brings the matrix into row echelon form, and backward elimination
brings the row echelon matrix into reduced row echelon form.

Forward elimination:
(1) Start with the first column, and proceed through all columns in order.
(2) If the diagonal entry in the column is zero, permute with the first avail-

able lower row so that the diagonal entry is nonzero (use P ).
(3) Eliminate all entries below this one in order (use E).

Note that forward elimination does not use D. Also note that this algorithm
is so specific, the sequence of elementary matrices and the row echelon form
obtained is unique.

Backward elimination:
(1) Make all pivots equal to one (use D).
(2) Starting from the right, working upward then leftward, make all entries

above a pivot equal to zero (use E).

To solve a system of linear equations Ax = b, form the augmented matrix
[A | b] and work A and b simultaneously. Perform forward elimination and
backward elimination on A, and then read off the solution. We describe this last
step momentarily.
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Once the matrix is in reduced row echelon form, it is easy to read off the
general solution. We give an example, then list the exact steps to take.

Example 5. Consider the matrix equation


1 2 0 0 0 0
0 0 1 0 0 0
0 0 0 1 5 0
0 0 0 0 0 1




x1

x2

x3

x4

x5

x6

 =


1
2
3
4


Computing the matrix product on the left gives

x1 + 2x2

x3

x4 + 5x5

x6

 =


1
2
3
4


The solution set of this equation is a subset of R6, so we actually seek six di-
mensional vectors. Insert the free variables into the equation in an appropriate
fashion to arrive at 

x1 + 2x2

x2

x3

x4 + 5x5

x5

x6

 =


1
x2

2
3
x5

4


By the definition of vector addition, this is the same as

x1

x2

x3

x4

x5

x6

 + x2


2
0
0
0
0
0

 + x5


0
0
0
5
0
0

 =


1
0
2
3
0
4

 + x2


0
1
0
0
0
0

 + x5


0
0
0
0
1
0


Subtract the free columns from both sides and use the distributive property to
obtain 

x1

x2

x3

x4

x5

x6

 =


1
0
2
3
0
4

 + x2


−2
1
0
0
0
0

 + x5


0
0
0
−5
1
0


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12. Solution Method

Let A = [aij ]ij be an m×n matrix, x = [x1, . . . , xn]t an n-dimensional variable
column vector, and b = [b1, . . . , bm] an m-dimensional constant column vector.
Then the solution set of the matrix equation Ax = b is the solution set of a
system of linear equations.

Let O be the product of all the elementary matrices whose corresponding
row operations bring the matrix A into row echelon form, that is, those used in
forward elimination. Set Q = OA, where Q is in row echelon form. Let c = Ob.
Then the solution set of Ax = b is equal to the solution set of OAx = Ob, i.e.,
Qx = c.

At this point, we can tell if there is no solution: this happens when the a row
of the nonaugmented matrix contains only zeros, but the corresponding entry of
the augmentation column is nonzero. We can also tell if the solution is unique:
this happens when the number of nonzero rows equals the number of columns.

Let U be the product of all the elementary matrices whose corresponding row
operations bring the matrix A into reduced row echelon form; that is, R = UA,
where R is in reduced row echelon form. Let d = Ub. Then the solution set of
Ax = b is equal to the solution set of UAx = Ub, i.e., Rx = d. We describe how
to read off the general solution from the matrix equation Rx = d.

We say that R(j) is a basic column if R(j) (or Q(j)) contains a pivot; otherwise
R(j) is a free column.

We say that xj is a basic variable if A(j) contains a pivot; otherwise xj is a
free variable.

The general solution will be of the form

v0 + c1v1 + · · ·+ ckvk,

where k is the number of free variables; we have k = n−r, where r is the number
of nonzero rows.

The vector v0 is the particular solution obtained by setting the free variables
equal to 0 and solving for the basic variables.

The vectors vi are found by replacing d by the zero vector, setting the ith free
variable equal to 1 and the other free variables equal to 0, and solving for the
basic variables.

We can read off the general solution from the reduced matrix as follows:
(1) eliminate any zero rows at the bottom of the reduced matrix;
(2) insert a zero row at row i for every free variable xi;
(3) multiply each free column by −1;
(4) add ei to each free column for every free variable xi;
(5) the particular solution is now the augmentation column;
(6) the homogeneous solution is now the span of the adjusted free columns.
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13. Geometric Interpretation of Systems of Linear Equations

We have two geometric interpretations for solving a system of linear equations:
as the intersection of the loci of the equations, and as the preimage of a linear
transformation. How do these geometric interpretations correspond?

Reconsider the system of linear equations

3x1 − 4x2 = 11;
x1 + 2x2 = 7.

There are two ways of viewing this problem geometrically:
We want to find a point (x1, x2) which satisfies both equations, that is, which

lies on both lines. This is an AND condition, and AND corresponds to the set
operation of intersection (just as OR corresponds to the set operation of union);
so we intersect the lines (which are, after all, subsets of R2) and find that the
only point of intersection is (11, 7).

The second geometric interpretation comes from putting the coefficients on
the left hand side of the system of equations into a matrix A, the indeterminates
into a column vector x and the values on the left hand side into a column vector
b:

A =
[
3 −4
1 2

]
; x =

[
x1

x2

]
; and b =

[
11
7

]
.

We see that solving the system of equations is equivalent to solving the matrix
equation

Ax = b.

But A corresponds to a linear transformation TA; thus we seek the preimage of
b under the linear transformation TA.

How do these two geometric interpretations coincide?
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14. Component Functions

Let f : Rn → Rm. For each i ∈ {1, . . . ,m}, define a function

fi : Rn → R by fi(v) = projei
f(v);

this is called the ith component function of f .

Example 6. Let f : R → R2 be given by f(t) = (cos t, sin t). Then f1 = cos
and f2 = sin. Note that the image of the function f is a circle in R2.

As this example shows, we may turn our definition around; that is, given m
functions f1, . . . , fm : Rn → R, we construct a function f : Rn → Rm by defining
f(v) = (f1(v), . . . , fm(v)).

Now let f1 : R2 → R be given by f1(x, y) = 3x − 4y and let f2 : R2 → R
be given by f2(x, y) = x + 2y. The line in R2 which is the locus the equation
3x1 − 4x2 = 11 is the preimage of 11 under the function f1; the second line is
the preimage of 7 under f2. A solution (x1, x2) for the system of equations is an
element of the set f−1

1 (11) ∩ f−1
2 (7).

Define f : R2 → R2 by f(x) = (f1(x), f2(x)); that is, f(x1, x2) = (3x1 −
4x2, x1 + 2x2). Then the solution to the system of linear equations we started
out with is the preimage of the point (11, 7) under this new function; that is, we
wish to find v such that f(v) = (11, 7), which is the same as saying that we wish
to discover the set f−1(11, 7) = f−1

1 (11) ∩ f−1
2 (7).

By a previous proposition, we see that the function f is a linear transforma-
tion; let us relabel it by T .

Solving the system of equations is equivalent to finding the preimage of the
point (11, 7) under the linear transformation T : R2 → R2 given by T (x1, x2) =
(3x1 − 4x2, x1 + 2x2). What is the effect of T on the standard basis, and what
is the matrix associated to T?

We have T (e1) = T (1, 0) = (3, 1) and T (e2) = T (0, 1) = (−4, 2). Thus the
matrix which corresponds to T is

A =
[
3 −4
1 2

]
,

and finding the preimage of (11, 7) under T is equivalent to solving the matrix
equation

Ax = b, where x =
[
x1

x2

]
and b =

[
11
7

]
.
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In general, we have m equations in n unknowns. We obtain an m×n matrix A
of coefficients, an n× 1 column vector b of indeterminates, and an m× 1 column
vector of values. Solving the system is equivalent to solving the matrix equation
Ax = b. The associated transformation T = TA is obtained by creating m linear
functions Ti : Rn → R given by the left hand sides of our equations; these become
the component functions of T : Rn → Rm. The preimage of each Ti at bi is a
hyperplane in Rn. The solution set is the intersection of the hyperplanes, which
is the same as the preimage of the point b under the linear transformation T .

We may also view this as follows. Let f : A → B be any function, and let
C,D ⊂ B. Then f−1(C ∩D) = f−1(C) ∩ f−1(D).

Let Hi be the hyperplane in Rm (the range of T ) given by

Hi = {(y1, . . . , ym) ∈ Rm | yi = bi}.
Then

{b} = ∩m
i=1Hi.

Let Li be the hyperplane in Rn (the domain of T ) which is the locus of the
equation

ai1xi + · · ·+ ainxn = bi.

Then if X is the solution set to our system of linear equations, we have

X = ∩m
i=1Li.

But Li = T−1(Hi), and

X = ∩m
i=1T

−1(Hi) = T−1(∩m
i=1Hi) = T−1(b).

15. Geometric Interpretation of the Solution Process

We have the matrix equation Ax = b, where A is an m× n matrix. We know
that A corresponds to a linear transformation T : Rn → Rm. The columns of A
are the destinations of the standard basis vectors in Rn under the transformation
T . We ask if b is a linear combination of these destinations, in which case there
is a solution to the equation.

When row reducing the augmented matrix [A | b], we are in theory multiplying
both sides of the equation Ax = b by elementary invertible m × m matrices.
Each such multiplication corresponds to an invertible linear transformation of
Rm, which is the range space of the linear transformation T . What in fact we are
doing is transmuting Rm so that the labeling of the destinations of the standard
basis vectors is more to our liking; in the process, b is also moved to a new
location. That is, we are relabeling the points in Rm so that we can see more
clearly the manner in which b is a linear combination of the destinations of the
standard basis vectors.
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